dxDAQO Omen Arbitrator Review No. 1

Feb, 2021



Chapter 1

Introduction

1.1 Scope of Work

This code review was prepared by Sunfish Technology, LLC at the request of members
of dxDAO, an organization governed by a smart contract on the Ethereum blockchain.
The code covered by this review (see implements a contract that allows
the dxDAO Avatar contract to act as an arbitrator for disputes (and "questions") for a
third-party platform.

1.2 Source Files

This review covers code from the following public git repository and commit SHA:

github.com/nicoelzer/omen-arbitrator
c2b532084998a42b5def®da54bb6cf2cOcf8edfal

Within that commit, only the following files were reviewed:
e contracts/DXdaoArbitrator.sol

This review was conducted under the optimistic assumption that all of the support-
ing software infrastructure necessary for the deployment and operation of the reviewed
code works as intended. There may be critical defects in code outside of the scope of
this review that could render deployed smart contracts inoperable or exploitable.

1.3 License and Disclaimer of Warranty

This source code review is not an endorsement of the code or its suitability for any
legal/regulatory regime, and it is not intended as a definitive or exhaustive list of de-
fects. This document is provided expressly for the benefit of dxDAO developers and
only under the following terms:



THIS REVIEW IS PROVIDED BY SUNFISH TECHNOLOGY, LLC. “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
SUNFISH TECHNOLOGY, LLC. OR ITS OWNERS OR EMPLOYEES BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS REPORT OR REVIEWED SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.



Chapter 2

Moderate Defects

Issues discussed in this section are code defects that may lead to unintended deviations
in behavior. It may be possible to chain multiple moderate defects into a working
exploit.

2.1 Missing Re-entrancy Guard

The requestArbitration() function can be called by any Ethereum address, and it
transfers Ether, manipulates internal state, and calls external contracts. Consequently,
this function could be exploitable through a re-entrancy attack, or it could enable an
attack against one of the contracts that it calls.

Consider using a re-entrancy guard (like OpenZeppelin’s ReentrancyGuard) to
protect the requestArbitration() function and its callees.



Chapter 3

Minor Defects

Issues discussed in this sections are subjective code defects that affect readability, reli-
ability, or performance.

3.1 Non-standard Function Naming

The setOwner () function should be renamed to changeOwner () in order to remain
consistent with the conventional naming of this functionality.

3.2 Pointless Proposal Creation

The requestArbitration() function creates a dxDAO "proposal” to call disput-
eResolutionNotification(), which is a pure function, and therefore has no visi-
ble side-effects by definition. It is not clear why the requestArbitration() function
needs to create a proposal that does nothing as part of the arbitration process. (There
is a good chance that this proposal could be elided entirely in favor of examination of
the event logs emitted by the requestArbitration() function.)

3.3 Missing Check for Arbitrator Status

The submitAnswerByArbitrator() function does not check that the arbitrator for
the given questionId is address(this). Additionally, the function does not check
that a fee was paid along with the question. It may make sense to check that the param-
eters to the submitAnswerByArbitrator() function are reasonable before passing
them to Realitio.submitAnswerByArbitrator().

3.4 Use selector for Function Selectors

The following code open-codes the calculation of a function selector:



bytes4(keccak256('disputeResolutionNotification(bytes32)'))

However, the following code is equivalent, and also robust to misspelling of the
method name:

this.disputeResolutionNotification.selector

3.5 Inconsistent Solidity Version

The DXdaoArbitrator.sol contract uses solidity 0.8.0 or higher, but most recent
by dxDAO uses the solidity 8.5 .x series compiler. New development ought to use the
same compiler version(s) and flags so as to reduce cognitive overhead for developers
when reviewing different pieces of code.

Also, note that solidity 0.8 uses checked math automatically, so using SafeMath
(as the code does now) is unnecessary when using this compiler version.

3.6 Missing Documentation

The purpose of the proposalDescriptionHash and metadata fields of the DX-
daoArbitrator contract is undocumented. Consider documenting these public con-
tract variables.

It may also make sense to write documentation for the expected flow of calls from
dxDAO and the Avatar contract to the DXdaoArbitrator contract, as it is not imme-
diately obvious how these pieces are intended to fit together. The process of carefully
documenting the intended interactions between those contracts may also reveal inter-
operability issues in the software architecture.

3.7 Superfluous Function

The getDisputeFee() function duplicates the auto-generated disputeFee() acces-
sor function for the public disputeFee variable. The getDisputeFee() function can
be removed entirely.



	1 Introduction
	1.1 Scope of Work
	1.2 Source Files
	1.3 License and Disclaimer of Warranty

	2 Moderate Defects
	2.1 Missing Re-entrancy Guard

	3 Minor Defects
	3.1 Non-standard Function Naming
	3.2 Pointless Proposal Creation
	3.3 Missing Check for Arbitrator Status
	3.4 Use selector for Function Selectors
	3.5 Inconsistent Solidity Version
	3.6 Missing Documentation
	3.7 Superfluous Function


